Given:
a.) The actual dimension of a rectangular classroom is 36 feet in length and 32 feet in width.
b.) In a scaled drawing, the floor has a length of 9 inches.
For us to be able to determine the area of the classroom's scaled drawing, let's first determine the scaled width.
Let,
x = the scaled width
Applying ratios and proportions, we get:
[tex]\text{ 36 : 32 = 9 : x }\rightarrow\text{ }\frac{36}{32}\text{ = }\frac{9}{x}[/tex][tex]\text{ \lparen36\rparen\lparen x\rparen = \lparen9\rparen\lparen32\rparen}[/tex][tex]\text{ 36x = 288}[/tex][tex]\text{ }\frac{\text{ 36x}}{\text{ 36}}\text{ = }\frac{\text{ 288}}{\text{ 36}}[/tex][tex]\text{ x = 8}[/tex]Therefore, the scaled width is 8 inches.
Let's now find the area:
[tex]\text{ Area = L x W = 9 x 8}[/tex][tex]\text{ Area = 72 in.}^2[/tex]Therefore, the area of the scaled drawing is 72 in.²