Respuesta :

We are given one endpoint (2, 5) and a midpoint (5, 1)

We are asked to find the coordinates of the other endpoint

Recall that the midpoint formula is given by

[tex]\mleft(x_m,y_m\mright)=\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}[/tex]

Where

[tex](x_m,y_m)=(5,1)_{}\text{ and }(x_1,y_1)=(2,5)[/tex]

So, the other endpoint can be found as

[tex]x_m=\frac{x_1+x_2}{2},y_m=\frac{y_1+y_2}{2}[/tex]

Substitute the known values

[tex]\begin{gathered} 5=\frac{2_{}+x_2}{2},\text{ }1_{}=\frac{5_{}+y_2}{2} \\ 2\times5=2_{}+x_2,\text{ }2\times1_{}=5_{}+y_2 \\ 10=2_{}+x_2,\text{ }2_{}=5_{}+y_2 \\ x_2=10-2,\text{ }y_2=2-5 \\ x_2=8,\text{ }y_2=-3 \end{gathered}[/tex]

Therefore, the coordinates of the other endpoint are

[tex](x_2,y_2)=(8,-3)[/tex]