Given:
[tex]f(x)=_{}x^6-2x^2+3[/tex][tex]\begin{gathered} f(-x)=(-x)^6-2(-x)^2+3 \\ f(-x)=x^6-2x^2+3 \end{gathered}[/tex][tex]f(x)=f(-x)[/tex]f is an even function.
Even function symmetric with respect to y-axis.
b)
[tex]f(x)=x^3-5[/tex][tex]\begin{gathered} f(-x)=(-x)^3-5 \\ f(x)=-x^3-5 \end{gathered}[/tex]function is neither odd nor even.
Its not symmetric.