Respuesta :

ANSWER

The wavelength of the photon is 0.00669 nm

STEP-BY-STEP EXPLANATION:

Given information

The energy of the photon = 2.97 x 10^-19J

Let x represents the wavelength of the photon

The first thing to do is to establish the relationship between energy and photon

Recall that,

E = hf --------------- equation 1

Where

h = Planck's constant

f = frequency

[tex]\begin{gathered} \text{Note, c = f}\lambda \\ Isolate\text{ f in the above equation} \\ f\text{ = }\frac{c}{\lambda}\text{ --------- equation 2} \end{gathered}[/tex]

The next step is to substitute the value of f into equation 1, then, we have the below equation

[tex]E\text{ = h}\frac{c}{\lambda}\text{ ------equation 3}[/tex]

Recall that,

h = 6.626 x 10^-34 J

c = 3 x 10^8 m/s

To find the wavelength, we need to substitute the above data into equation 3

[tex]\begin{gathered} 2.97\cdot10^{-19}\text{ = }\frac{6.626\cdot10^{-34\text{ }}\text{ x 3 }\cdot10^8}{\lambda} \\ 2.97\cdot10^{-19}\text{ = }\frac{6.626\text{ x 3 }\cdot10^{-34\text{ + 8}}}{\lambda} \\ 2.97\cdot10^{-19}\text{ = }\frac{19.878\cdot10^{-26}}{\lambda} \\ 2.97\cdot10^{-19}\text{ = }\frac{1.9878\cdot10^{-25}}{\lambda} \\ \text{Cross multiply} \\ 1.9878\cdot10^{-25}\text{ = 2.97 }\cdot10^{-19}\text{ x }\lambda \\ \text{Isolate }\lambda \\ \lambda\text{ = }\frac{1.9878\cdot10^{-25}}{2.97\cdot10^{-19}} \\ \lambda\text{ = }\frac{1.9878}{2.97}\cdot10^{-25\text{ + 19}} \\ \lambda\text{ = 0.669 }\cdot10^{-6}m \\ \lambda\text{ = 0.00669 nm} \end{gathered}[/tex]

Therefore, the wavelength of the photon is 0.00669 nm