Respuesta :

The expressions are simplified to 2x and [tex]\frac{2}{(x+ 1)(x - 1)}[/tex]

How to simply the expressions

1.

Given the expression;

[tex]\frac{8x^2 - 4x}{4x - 2}[/tex]

Let's factorize the numerator;

[tex]\frac{2x( 4x - 2)}{4x - 2}[/tex]

Factor the common terms, we have;

2x

2. [tex]\frac{1}{x-1} - \frac{2}{x} + \frac{1}{x + 1}[/tex]

Find the Lowest common multiple

[tex]\frac{x(x+ 1) - 2 (x+ 1)(x - 1) + x(x-1)}{x(x-1)(x+ 1)}[/tex]

expand the brackets

[tex]\frac{x^2 + x -2(x^2 -x + x -1) + x^2 -x}{x(x-1)(x+ 1)}[/tex]

[tex]\frac{x^2+x - 2x^2 -2 + 2x + 2 + x^2 - x}{x(x+1) (x -1)}[/tex]

collect like terms

[tex]\frac{2x}{x(x+ 1) (x-1)}[/tex]

Divide common terms

[tex]\frac{2}{(x+ 1)(x - 1)}[/tex]

Thus, the expressions are simplified to 2x and [tex]\frac{2}{(x+ 1)(x - 1)}[/tex]

Learn more about algebraic expressions here:

https://brainly.com/question/4344214

#SPJ1