Part (a)
Note 999999=1000000-1. By Fermat's little theorem, since 100000=10⁶,
[tex]10^{6} \equiv 1 \pmod{7} \\ \\ \therefore 10^{6}-1 \equiv 0 \pmod{7}[/tex]
Part (b)
Note that
[tex]10^{12n}-1=(10^n)^{12}-1 \equiv 0 \pmod{13}[/tex]
Since
[tex]1 = 1001 - 1000[/tex]
and
[tex]-1 \equiv 1000 \pmod{1001}[/tex]
10³ is its own inverse modulo 1001, meaning that:
[tex]10^3 x \equiv 1 \pmod{1001} \implies x=10^3 \\ \implies 10^{12n}=(10^3 \cdot 10^3)^{2n} \equiv 1 \pmod{1001} \\ \\ \implies 10^{12n}-1 \equiv 0 \pmod{1001}[/tex]