Respuesta :
Answer: (-4-[tex]\sqrt{11}[/tex], -4+[tex]\sqrt{11}[/tex]) ==> B
Step-by-step explanation:
x^2+8x+5<0
x^2+8x+16-11<0
(x+4)^2-11<0
(x+4)^2<11
x+4<[tex]\sqrt{11}[/tex]
x<-4+[tex]\sqrt{11}[/tex]
x+4>-[tex]\sqrt{11}[/tex]
x>-4-[tex]\sqrt{11}[/tex]
(-4-[tex]\sqrt{11}[/tex], -4+[tex]\sqrt{11}[/tex]) ==> B
Remember, the solution doesn't include the x values -4-[tex]\sqrt{11}[/tex] and -4+[tex]\sqrt{11}[/tex] since if they were plugged in x^2+8x+5, the expression would equal 0. The expression is supposed to be LESS than 0, not equal to 0.
Answer:
Answer: (-4-\sqrt{11}11 , -4+\sqrt{11}11 )
x^2+8x+5<0
x^2+8x+16-11<0
(x+4)^2-11<0
(x+4)^2<11
x+4<\sqrt{11}11
x<-4+\sqrt{11}11
x+4>-\sqrt{11}11
x>-4-\sqrt{11}11
(-4-\sqrt{11}11 , -4+\sqrt{11}11 )