Respuesta :

Answer: (-4-[tex]\sqrt{11}[/tex], -4+[tex]\sqrt{11}[/tex]) ==> B

Step-by-step explanation:

x^2+8x+5<0

x^2+8x+16-11<0

(x+4)^2-11<0

(x+4)^2<11

x+4<[tex]\sqrt{11}[/tex]

x<-4+[tex]\sqrt{11}[/tex]

x+4>-[tex]\sqrt{11}[/tex]

x>-4-[tex]\sqrt{11}[/tex]

(-4-[tex]\sqrt{11}[/tex], -4+[tex]\sqrt{11}[/tex]) ==> B

Remember, the solution doesn't include the x values -4-[tex]\sqrt{11}[/tex] and -4+[tex]\sqrt{11}[/tex]  since if they were plugged in x^2+8x+5, the expression would equal 0. The expression is supposed to be LESS than 0, not equal to 0.

siakim

Answer:

Answer: (-4-\sqrt{11}11 , -4+\sqrt{11}11 )

x^2+8x+5<0

x^2+8x+16-11<0

(x+4)^2-11<0

(x+4)^2<11

x+4<\sqrt{11}11

x<-4+\sqrt{11}11

x+4>-\sqrt{11}11

x>-4-\sqrt{11}11

(-4-\sqrt{11}11 , -4+\sqrt{11}11 )