Respuesta :
The vertices of the image are R'(x, y) = (- 1, - 7), S'(x, y) = (4, - 7), T'(x, y) = (4, - 5) and V'(x, y) = (- 1, - 3).
What are the coordinates of the vertices of the image by using a reflection formula?
In this question we know the locations of the four vertices of the trapezoid RSTV and we need to determine the coordinates of its image by using a reflection formula about an axis parallel to the y-axis, whose formula is described below:
P'(x, y) = P(x, y) - 2 · [P(x, y) - (p, k)]
Where:
- p - x-Coordinate of the original point.
- k - y-Coordinate of the reflection axis.
- P(x, y) - Original point
- P'(x, y) - Resulting point
Now we proceed to find the coordinates of the images:
R'(x, y) = (- 1, 1) - 2 · [(- 1, 1) - (- 1, - 3)]
R'(x, y) = (- 1, 1) - 2 · (0, 4)
R'(x, y) = (- 1, 1) + (0, - 8)
R'(x, y) = (- 1, - 7)
S'(x, y) = (4, 1) - 2 · [(4, 1) - (4, - 3)]
S'(x, y) = (4, 1) - 2 · (0, 4)
S'(x, y) = (4, 1) + (0, - 8)
S'(x, y) = (4, - 7)
T'(x, y) = (4, - 1) - 2 · [(4, - 1) - (4, - 3)]
T'(x, y) = (4, - 1) - 2 · (0, 2)
T'(x, y) = (4, - 1) + (0, - 4)
T'(x, y) = (4, - 5)
V'(x, y) = (- 1, - 3) - 2 · [(- 1, - 3) - (- 1, - 3)]
V'(x, y) = (- 1, - 3) - 2 · (0, 0)
V'(x, y) = (- 1, - 3)
The vertices of the image are R'(x, y) = (- 1, - 7), S'(x, y) = (4, - 7), T'(x, y) = (4, - 5) and V'(x, y) = (- 1, - 3).
To learn more on rigid transformations: https://brainly.com/question/1761538
#SPJ1