Respuesta :
Answer:
(d) 48(0.25^(n-1))
Step-by-step explanation:
The points shown on the graph have y-values that decrease by a factor of 4 as x-values increase by 1. The first couple are (1, 48), (2, 12). You want the formula for the n-th term.
Geometric sequence
The terms of a geometric sequence have a common ratio (r). If the first term is a1, the general term is ...
an = a1(r^(n-1))
Application
The given sequence has first term a1 = 48. The common ratio is ...
r = 12/48 = 1/4 = 0.25
Using these value in the formula for the general term, we find the n-th term to be ...
an = 48(0.25^(n-1)) . . . . n-th term of the pattern
[tex]\begin{array}{ccccccccc} 1&&2&&3&&4&&5\\\cline{1-9} \\48&,&12&,&3&,&\underset{0.75}{\frac{3}{4}}&&\underset{0.1875}{\frac{3}{16}}\\[2em]\cline{1-9} &&48\left( \frac{1}{4} \right)&&12\left( \frac{1}{4} \right)&&3\left( \frac{1}{4} \right)&&\frac{3}{4} \end{array}~\hfill \begin{array}{llll} a_1=48\\\\ r=\frac{1}{4} \end{array} \\\\[-0.35em] ~\dotfill[/tex]
[tex]n^{th}\textit{ term of a geometric sequence} \\\\ a_n=a_1\cdot r^{n-1}\qquad \begin{cases} a_n=n^{th}\ term\\ n=\textit{term position}\\ a_1=\stackrel{\textit{first term}}{48}\\ r=\stackrel{\textit{common ratio}}{\frac{1}{4}\to 0.25} \end{cases}\implies a_n=48\left( 0.25 \right)^{n-1}[/tex]