Respuesta :
Answer:
24/25
Step-by-step explanation:
use tan^-1 to find the angle
tan^-1(3/4)=36.86989765°
A =36.86989765°
2A= 2×36.86989765
=73.73979529°
sin2A>>>>sin(73.73979529°)
=24/25 or 0.96
Answer:
sin2A = [tex]\frac{24}{25}[/tex]
Step-by-step explanation:
using the identity
sin2A = 2sinAcosA
given
tan2A = [tex]\frac{3}{4}[/tex] = [tex]\frac{opposite}{adjacent}[/tex]
then this is a 3- 4- 5 right triangle with
hypotenuse = 5, opposite = 3 , adjacent = 4 , then
sinA = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{3}{5}[/tex] and cosA = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{4}{5}[/tex]
Then
sin2A = 2 × [tex]\frac{3}{5}[/tex] × [tex]\frac{4}{5}[/tex] = [tex]\frac{2(3)(4)}{5(5)}[/tex] = [tex]\frac{24}{25}[/tex]