Respuesta :

Answer: 57 ; 72

Explanation:

Given information

2/3 of a number is 2 more than (1/2) of another number

Sum = 129

Set variables

Let x be the first number

Let y be the other number

Set system of equations

[tex]1)~\dfrac{2}{3} x=\dfrac{1}{2} y+2[/tex]

[tex]2)~x + y=129[/tex]

Eliminate fractions in the 1) equation

[tex]\dfrac{2}{3} x\times6=\dfrac{1}{2} y\times6+2\times6[/tex]

[tex]4x=3y+12[/tex]

Move x and y onto the same side

[tex]4x-3y=12[/tex]

Current System

[tex]1)~4x-3y=12[/tex]

[tex]2)~x + y=129[/tex]

Multiply 3 on both sides in 2) equation

[tex]x\times3 + y\times3=129\times3[/tex]

[tex]3x+3y=387[/tex]

Current System

[tex]1)~4x-3y=12[/tex]

[tex]2)~3x+3y=387[/tex]

Add 1) equation and 2) equation together

[tex](4x - 3y)+(3x+3y)=(12)+(387)[/tex]

Expand parenthesis and combine like terms

[tex]4x - 3y + 3x + 3y = 12 + 387[/tex]

[tex]4x + 3x - 3y + 3y=399[/tex]

[tex]7x=399[/tex]

Divide 7 on both sides

[tex]7x\div7=399\div7[/tex]

[tex]\Large\boxed{x=57}[/tex]

Substitute the x value into one of the equations to find the y value

x + y = 129

(57) + y = 129

y = 129 - 57

[tex]\Large\boxed{y=72}[/tex]

Hope this helps!! :)

Please let me know if you have any questions