[tex]\huge\underline{\underline{\boxed{\mathbb {SOLUTION:}}}}[/tex]
▪ [tex]\longrightarrow \sf{f(x) = |x + 4| + 2}[/tex]
You need to remember that the form of an Absolute Value Function is:
• For the vertex:
[tex]\small\longrightarrow \sf{H= \: \: x -coordinate}[/tex]
[tex]\small\longrightarrow \sf{K= y-coordinate}[/tex]
• For the definition:
If "a" is positive (+) , then the range of the function is:
[tex]\small\longrightarrow \sf{R:y \: \underline > \: k}[/tex]
If "a" is negative (-), the range of the function is:
[tex]\small\longrightarrow \sf{R: y \: \underline < \: k}[/tex]
In this case we can identify that:
[tex]\small\longrightarrow \sf{a = 1}[/tex]
[tex] \small\longrightarrow\sf{a = 2}[/tex]
[tex]\huge\underline{\underline{\boxed{\mathbb {ANSWER:}}}}[/tex]
[tex] \large \bm{R: {f(x) \in ℝ | f(x) \underline > 2}}[/tex]