Respuesta :
[tex]~~~~~~~~~~~~\textit{quadratic formula} \\\\ 0=\stackrel{\stackrel{a}{\downarrow }}{3}x^2\stackrel{\stackrel{b}{\downarrow }}{+2}x\stackrel{\stackrel{c}{\downarrow }}{-5} \qquad \qquad x= \cfrac{ - b \pm \sqrt { b^2 -4 a c}}{2 a} \\\\\\ x= \cfrac{ - (2) \pm \sqrt { (2)^2 -4(3)(-5)}}{2(3)} \implies x = \cfrac{ -2 \pm \sqrt { 4 +60}}{ 6 } \\\\\\ x= \cfrac{ -2 \pm \sqrt { 64 }}{ 6 }\implies x=\cfrac{ -2 \pm 8}{ 6 }\implies x= \begin{cases} ~~ 1\\ -\frac{5}{3} \end{cases}[/tex]
Answer:
-5/3 and -1
Step-by-step explanation:
I am not sure what you mistake is, but here is my solution. I hope that it helps. I am sorry that you are frustrated. We have all been there.