It's easy to show that [tex]7\tan(4x)[/tex] is strictly increasing on [tex]x\in\left[0,\frac\pi8\right][/tex]. This means
[tex]M = \max \left\{7\tan(4x) \mid \dfrac\pi{16} \le x \le \dfrac\pi{12}\right\} = 7\tan(4x) \bigg|_{x=\pi/12} = 7\sqrt3[/tex]
and
[tex]m = \min \left\{7\tan(4x) \mid \dfrac\pi{16} \le x \le \dfrac\pi{12}\right\} = 7\tan(4x) \bigg|_{x=\pi/16} = 7[/tex]
Then the integral is bounded by
[tex]\displaystyle 7\left(\frac\pi{12} - \frac\pi{16}\right) \le \int_{\pi/16}^{\pi/12} 7\tan(4x) \, dx \le 7\sqrt3 \left(\frac\pi{12} - \frac\pi{16}\right)[/tex]
[tex]\implies \displaystyle \boxed{\frac{7\pi}{48}} \le \int_{\pi/16}^{\pi/12} 7\tan(4x) \, dx \le \boxed{\frac{7\sqrt3\,\pi}{48}}[/tex]