Respuesta :

The derivative of y= sin x sin 3x​ is [tex]$=3 \cos x-3 \cos 3 x$[/tex]

What is a derivative?

  • Futures contracts, options contracts, and credit default swaps are typical types of derivatives. Beyond this, a sizable number of derivative contracts satisfy the requirements of a wide range of counterparties.

To find the derivative of y= sin x sin 3x​:

[tex]$y=3 \sin (x)-\sin (3 x)$[/tex]

[tex]$y^{\prime}=3 \cos x-[\cos (3 x) \cdot 3]$[/tex]

[tex]$y^{\prime}=3(\cos x-\cos 3 x)$[/tex]

[tex]\frac{dx}{dy} =3 cosx - 3 cos x[/tex]

Differentiate [tex]sin 3x[/tex] using the chain rule

Given [tex]y=f^{'} (g(x))*g^{'}[/tex]←chain rule

y=[tex]y=3 sin x-sin 3x[/tex]

[tex]\frac{dx}{dy} =3 cos x - cos 3x*\frac{d}{dx} (3x)[/tex]

[tex]=3cosx-3cos3x[/tex]

To learn more about derivatives, refer to

https://brainly.com/question/23819325

#SPJ9