The 60 degrees is needed between the direction of polarized light and the axis of a polarizing filter to cut its intensity to one-fifth of its initial value.
It is given that axis of a polarizing filter to cut its intensity to one-fifth of its initial value.
It is required to find the angle between the direction of polarized light and the axis of a polarizing filter to cut its intensity to one-fifth of its initial value.
Suppose the angle between the polarizer and the axis of filter is θ.
The intensity of light that is passing after the filter is 0.2 l₀.
From the law of Malus, we have
I = I₀ [tex]cos^{2}[/tex]θ
0.2I₀= I₀ [tex]cos^{2}[/tex]θ
0.2 = [tex]cos^{2}[/tex]θ
[tex]cos\\[/tex]θ = 0.447
θ = 60°
Thus the angle between the direction of polarized light and the axis of a polarizing filter is 60 degree.
Learn more about the term Polarized Light here:
https://brainly.com/question/17003853
#SPJ4