The solution to given expression tan(2θ) is 22.615°
For given question,
We have been given an expression tan(2θ)
Given that cos(θ) = 5/13, and θ is in quadrant 1.
We know that the trigonometric identity
sin²θ + cos²θ = 1
⇒ cos²θ = (5/13)²
⇒ sin²θ = 1 - 25/169
⇒ sin²θ = 169 - (25/169)
⇒ sin²θ = 144/169
⇒ sin(θ) = 12/13
We know that the identity cos(2x) = cos²x - sin²x
⇒ cos(2θ) = cos²θ - sin²θ
⇒ cos(2θ) = 25/169 - 144/169
⇒ cos(2θ) = -119/169
And sin(2x) = 2sin(x)cos(x)
⇒ sin(2θ) = 2sin(θ)cos(θ)
⇒ sin(2θ) = 2 × 12/13 × 5/13
⇒ sin(2θ) = 120/169
We know that, tan(x) = sin(x)/cos(x)
⇒ tan(2θ) = sin(2θ)/cos(2θ)
⇒ tan(2θ) = (120/169) / (-119/169)
⇒ tan(2θ) = 120 / (-119)
⇒ tan(2θ) = -1.008
Since θ is in quadrant 1, tan(2θ) = 1.008
⇒ 2θ = arctan(1.008)
⇒ 2θ = 45.23
⇒ θ = 22.615°
Therefore, the solution to given expression tan(2θ) is 22.615°
Learn more about the expression here:
https://brainly.com/question/14961928
#SPJ4