The final velocity is v[tex]_{2}[/tex] =-0.2m/s , v[tex]_{1}[/tex] = -3.2 m/s
Given data,
Mass of glider A (M[tex]_{1}[/tex]) = 0.15 kg
Mass of glider B (M[tex]_{2}[/tex]) = 0.3 kg
Initial velocity of A (u[tex]_{1}[/tex]) = 0.80ms-1
Initial velocity of B ( u[tex]_{2}[/tex]) = -2.2m/s
Momentum and kinetic energy are conserved in elastic collision . So,
M[tex]_{1}[/tex]u[tex]_{1}[/tex]+M[tex]_{2}[/tex]u[tex]_{2}[/tex] = M[tex]_{1}[/tex]v[tex]_{1}[/tex]+M[tex]_{2}[/tex]v[tex]_{2}[/tex]
0.15×0.8+0.3x(-2.2) = 0.15v[tex]_{1}[/tex]+0.3v[tex]_{2}[/tex]
-0.54 = 0.15v[tex]_{1}[/tex]+0.3v[tex]_{2}[/tex]
Again if,
u[tex]_{1}[/tex]+v[tex]_{1}[/tex] =u[tex]_{2}[/tex]+v[tex]_{2}[/tex]
0.8 +v[tex]_{1}[/tex] =-2.2+v[tex]_{2}[/tex]
v[tex]_{1}[/tex]-v[tex]_{2}[/tex] = -3
Solving for -0.54 = 0.15v[tex]_{1}[/tex]+0.3v[tex]_{2}[/tex] and v[tex]_{1}[/tex]-v[tex]_{2}[/tex] = -3 , we get
v[tex]_{2}[/tex] =-0.2m/s , v[tex]_{1}[/tex] = -3.2 m/s
Therefore,The final velocity is v[tex]_{2}[/tex] =-0.2m/s , v[tex]_{1}[/tex] = -3.2 m/s
Learn more about velocity here:
https://brainly.com/question/24135686
#SPJ4