Both the turbines take same amount of time to rotate through 1. 0 radian of angular displacement.
Given,
[tex]R_{A}[/tex] = [tex]2R_{B}[/tex]
[tex]V_{A}[/tex] = [tex]2V_{B}[/tex]
As, angular velocity is, ω
So, ω[tex]_{A}[/tex] = [tex]V_{A}[/tex] / [tex]R_{A}[/tex]
ω[tex]_{A}[/tex] = 2[tex]V_{B}[/tex] / 2[tex]R_{B}[/tex]
ω[tex]_{A}[/tex] = [tex]V_{B}[/tex] / [tex]R_{B}[/tex]
also, ω[tex]_{B}[/tex] = [tex]V_{B}[/tex] / [tex]R_{B}[/tex]
And angular displacement is , θ
θ = ω / t
t = θ / ω
[tex]t_{A} = t_{B}[/tex] = [tex]R_{B}[/tex] / [tex]V_{B}[/tex]
Therefore, Both the turbines take same amount of time to rotate through 1. 0 radian of angular displacement.
Learn more about angular displacement here;
https://brainly.com/question/13649539
#SPJ4