Respuesta :
Answer:
[tex]t = \cfrac{1}{2}[/tex]
Step-by-step explanation:
Given equation:
[tex]4(t+\cfrac{1}{4})=3[/tex]
Divide both sides by 4:
[tex]t+\cfrac{1}{4}=\cfrac{3}{4}[/tex]
Subtract 1/4 from both sides:
[tex]t = \cfrac{3}{4}- \cfrac{1}{4}[/tex]
[tex]t = \cfrac{2}{4}[/tex]
Simplify:
[tex]t = \cfrac{1}{2}[/tex]
Answer:
[tex]t = \frac{1}{2} [/tex]
Step-by-step explanation:
[tex]4(t + \frac{1}{4} ) = 3[/tex]
Divid the whole equation by 4.
[tex] \frac{4(t + \frac{1}{4} )}{4} = \frac{3}{4} [/tex]
[tex](t + \frac{1}{4} ) = \frac{3}{4} [/tex]
[tex]t + \frac{1}{4} = \frac{3}{4} [/tex]
Take 1/4 to right side.
[tex]t = \frac{ 3}{4} - \frac{1}{4} [/tex]
[tex]t= \frac{2}{4} [/tex]
To simplify the answer more divide the numerator and denominator by 2.
[tex]t = \frac{1}{2} [/tex]