Respuesta :

Answer:

[tex]t = \cfrac{1}{2}[/tex]

Step-by-step explanation:

Given equation:

[tex]4(t+\cfrac{1}{4})=3[/tex]

Divide both sides by 4:

[tex]t+\cfrac{1}{4}=\cfrac{3}{4}[/tex]

Subtract 1/4 from both sides:

[tex]t = \cfrac{3}{4}- \cfrac{1}{4}[/tex]

[tex]t = \cfrac{2}{4}[/tex]

Simplify:

[tex]t = \cfrac{1}{2}[/tex]

Hi1315

Answer:

[tex]t = \frac{1}{2} [/tex]

Step-by-step explanation:

[tex]4(t + \frac{1}{4} ) = 3[/tex]

Divid the whole equation by 4.

[tex] \frac{4(t + \frac{1}{4} )}{4} = \frac{3}{4} [/tex]

[tex](t + \frac{1}{4} ) = \frac{3}{4} [/tex]

[tex]t + \frac{1}{4} = \frac{3}{4} [/tex]

Take 1/4 to right side.

[tex]t = \frac{ 3}{4} - \frac{1}{4} [/tex]

[tex]t= \frac{2}{4} [/tex]

To simplify the answer more divide the numerator and denominator by 2.

[tex]t = \frac{1}{2} [/tex]