El volumen remanente entre la esfera y el cubo es igual a 30.4897 centímetros cúbicos.
En esta pregunta debemos encontrar el volumen remanente entre el espacio de una caja cúbica y una esfera introducida en el elemento anterior. El volumen remanente es igual a sustraer el volumen de la pelota del volumen de la caja.
Primero, se calcula los volúmenes del cubo y la esfera mediante las ecuaciones geométricas correspondientes:
Cubo
V = l³
V = (4 cm)³
V = 64 cm³
Esfera
V' = (4π / 3) · R³
V' = (4π / 3) · (2 cm)³
V' ≈ 33.5103 cm³
Segundo, determinamos la diferencia de volumen entre los dos elementos:
V'' = V - V'
V'' = 64 cm³ - 33.5103 cm³
V'' = 30.4897 cm³
El volumen remanente entre la esfera y el cubo es igual a 30.4897 centímetros cúbicos.
Para aprender más sobre volúmenes: https://brainly.com/question/23940577
#SPJ1