Respuesta :
Answer:
y = 140, x = 159
Step-by-step explanation:
Angle y:
we can find this angle by subtracting 40 from 180, 180-40 = 140 = y
Angle x:
Some measure of an angle plus angle b is equal to 180 degrees: 180-61 = 119
We can now find the measure of the third angle of the triangle: 180-(119+40) = 21
The third angle plus angle x is equal to 180: 180-21 = 159 = x
y = 140, x = 159
Step-by-step explanation:
Angle y:
we can find this angle by subtracting 40 from 180, 180-40 = 140 = y
Angle x:
Some measure of an angle plus angle b is equal to 180 degrees: 180-61 = 119
We can now find the measure of the third angle of the triangle: 180-(119+40) = 21
The third angle plus angle x is equal to 180: 180-21 = 159 = x
[tex] \qquad \qquad \bf \huge\star \: \: \large{ \underline{Answer} } \huge \: \: \star[/tex]
- x = 159°
- y = 140°
[tex]\textsf{ \underline{\underline{Steps to solve the problem} }:}[/tex]
[tex]\qquad❖ \: \sf \:y + a = 180[/tex]
( linear pair )
[tex]\qquad❖ \: \sf \:y + 40 = 180[/tex]
[tex]\qquad❖ \: \sf \:y = 180 - 40[/tex]
[tex]\qquad❖ \: \sf \:y = 140 \degree[/tex]
And
[tex]\qquad❖ \: \sf \:x = a +( 180 - b)[/tex]
( Exterior angle = sum of opposite interior angles )
[tex]\qquad❖ \: \sf \:x = 40 + (180 - 61)[/tex]
[tex]\qquad❖ \: \sf \:x = 40 + 119[/tex]
[tex]\qquad❖ \: \sf \:159 \degree[/tex]
[tex] \qquad \large \sf {Conclusion} : [/tex]
- x = 159°
- y = 140°