Respuesta :

Answer:

b = 133, a = 47

Step-by-step explanation:

If the two lines are parallel, then angle b is equal to 180-47 = 133 (same side interior angles), and angle is equal to angle 0 (alternate interior angles)

[tex] \qquad \qquad \bf \huge\star \: \: \large{ \underline{Answer} } \huge \: \: \star[/tex]

  • a = 47°

  • b = 133°

[tex]\textsf{ \underline{\underline{Steps to solve the problem} }:}[/tex]

[tex]\qquad❖ \: \sf \:a = \theta[/tex]

( by Alternate interior angle pair )

[tex]\qquad \therefore\: \sf \:a = 47 \degree[/tex]

Next,

[tex]\qquad❖ \: \sf \:b = 180 - \theta[/tex]

( by co - interior angle pair )

[tex]\qquad❖ \: \sf \:b = 180 - 47[/tex]

[tex]\qquad \therefore \: \sf \:b = 133 \degree[/tex]

[tex] \qquad \large \sf {Conclusion} : [/tex]

[tex]\qquad❖ \: \sf \: \:a = 47 \degree[/tex]

and

[tex]\qquad❖ \: \sf \:b = 133 \degree[/tex]