Respuesta :

MarvH
b= z(1+2y)/a(3-4y)        I hoped this helped you answer the question!

Answer:

[tex]b=\frac{z(2y+1)}{a(3-4y)}[/tex] for [tex]a(3-4y)\neq 0[/tex].

Step-by-step explanation:

The given equation is

[tex]3ab-z=y(4ab+2z)[/tex]

We need to solve the above equation for b.

Using distributive property we get

[tex]3ab-z=y(4ab)+y(2z)[/tex]

[tex]3ab-z=4aby+2yz[/tex]

Subtract 4aby from both sides.

[tex]3ab-z-4aby=2yz[/tex]

Add z on both sides.

[tex]3ab-4aby=2yz+z[/tex]

Taking out the common factor.

[tex]ab(3-4y)=z(2y+1)[/tex]

Divide both sides by a(3-4y).

[tex]b=\frac{z(2y+1)}{a(3-4y)}[/tex]

Therefore the value of b is [tex]b=\frac{z(2y+1)}{a(3-4y)}[/tex] for [tex]a(3-4y)\neq 0[/tex].