Respuesta :

v ⋅ w = (3)(6) + (4)(-9) + (7)(7)
v ⋅ w = 18 - 36 + 49
v ⋅ w = 31

The final answer is 31

Answer:  

The indicated dot product of v.w is 31.

Step-by-step explanation:

Given :  r = <9, -7, -8>, v = <3, 4, 7>, w = <6, -9, 7>

To find : The indicated dot product v.w?

Solution :

The dot product in [tex]R^3[/tex] is

If [tex]v=ai+bj+ck[/tex] and [tex]u=di+ej+fk[/tex]

Then, [tex]v.w=ad+be+cf[/tex]

We have given,

v = <3, 4, 7>, w = <6, -9, 7>

where, a=3 ,b=4, c=7 and d=6, e=-9, f=7

So, [tex]v.w=ad+be+cf[/tex]

[tex]v.w=3(6)+4(-9)+7(7)[/tex]

[tex]v.w=18-36+49[/tex]

[tex]v.w=31[/tex]

Therefore, The indicated dot product of v.w is 31.