Respuesta :

Step-by-step explanation:

Let x be mixture x liters and y be mixture y liters.

We need a total of 4 liters so

[tex]x + y = 4[/tex]

Mixture x is 20% saline solution

Mixture Y is a 10% saline solution

4 liters of a 15% saline solution is 60% saline solution.

[tex].20x + .10y = 0.6[/tex]

So a is the system of equations,

Using Elimination, eliminate the variable x.

[tex] - 5(.20x + .10y) = 0.6[/tex]

[tex]( - x - .50y) = - 3[/tex]

Add to the first system.

[tex]0.50y = 1[/tex]

[tex]y = 2[/tex]

Plug this into the of system of equations, to find x

[tex]x + 2 = 4[/tex]

[tex]x = 2[/tex]

So our solution is (2,2) We would need 2 liters of Mixture X and 2 liters of Mixture Y