Calculus problem:
[tex]\int\limits_ } \, \frac{9x+2}{x^2+x-6} dx[/tex]
- Do not copy and paste --> Results in immediate reports (Point-seekers)
- Do not spam
- Do not add any unnecessary information
- Add an explanation
- Please help, thank you

Respuesta :

Split the integrand into partial fractions.

[tex]\dfrac{9x+2}{x^2+x-6} = \dfrac{9x+2}{(x-2)(x+3)} = \dfrac a{x-2} + \dfrac b{x+3}[/tex]

[tex]\implies 9x+2 = a(x+3) + b(x-2) = (a+b)x + (3a-2b)[/tex]

[tex]\implies \begin{cases}a+b=9 \\ 3a-2b=2\end{cases} \implies a=4,b=5[/tex]

Then we have

[tex]\displaystyle \int \frac{9x+2}{x^2+x-6} \, dx = 4 \int \frac{dx}{x-2} + 5 \int \frac{dx}{x+3} \\\\ = \boxed{4\ln|x-2| + 5\ln|x+3| + C}[/tex]

which follows from the result

[tex]\displaystyle \int \frac{dx}x = \ln|x|+C[/tex]

Don’t think it’s possible