The permutation equation [tex]^{n+1}P_3 - ^nP_3= 3 * ^nP_2[/tex] is true for all integers n ≥ 3
We have:
[tex]^{n+1}P_3 - ^nP_3= 3 * ^nP_2[/tex]
Apply the following permutation formula
[tex]^{n}P_r = \frac{n!}{(n- r)!}[/tex]
So, we have:
[tex]\frac{(n + 1)!}{(n + 1 - 3)!} - \frac{n!}{(n - 3)!} = 3 * \frac{n!}{(n - 2)!}[/tex]
Evaluate the difference
[tex]\frac{(n + 1)!}{(n - 2)!} - \frac{n!}{(n - 3)!} = 3 * \frac{n!}{(n - 2)!}[/tex]
Expand
[tex]\frac{(n + 1)!}{(n - 2)(n - 3)!} - \frac{n!}{(n - 3)!} = 3 * \frac{n!}{(n - 2)(n - 3)!}[/tex]
Multiply through by (n - 3)!
[tex]\frac{(n + 1)!}{(n - 2)} - n! = 3 * \frac{n!}{(n - 2)}[/tex]
Expand
[tex]\frac{(n + 1) * n!}{(n - 2)} - n! = 3 * \frac{n!}{(n - 2)}[/tex]
Divide through by n!
[tex]\frac{(n + 1)}{(n - 2)} - 1 = \frac{3}{(n - 2)}[/tex]
Take the LCM
[tex]\frac{n + 1 - n + 2}{(n - 2)} = \frac{3}{(n - 2)}[/tex]
Evaluate the like terms
[tex]\frac{3}{(n - 2)} = \frac{3}{(n - 2)}[/tex]
Both sides of the equations are the same.
Hence, the permutation equation [tex]^{n+1}P_3 - ^nP_3= 3 * ^nP_2[/tex] is true for all integers n ≥ 3
Read more about permutation at:
https://brainly.com/question/11732255
#SPJ1