Respuesta :

[tex]\quad \huge \quad \quad \boxed{ \tt \:Answer }[/tex]

Correct Expression :

[tex]\qquad \tt \rightarrow \: |10| + | - 6| [/tex]

[tex]\qquad \tt \rightarrow \: distance = 16\:\: units\degree[/tex]

____________________________________

[tex] \large \tt Solution \: : [/tex]

[tex] \textsf{Using distance formula -} [/tex]

[tex]\qquad \tt \rightarrow \: \sqrt{(x_2 - x_1) {}^{2} + (y_2 - y_1) {}^{2} } [/tex]

[tex]\qquad \tt \rightarrow \: \sqrt{( - 6 - 10) {}^{2} + (4 - 4) {}^{2} } [/tex]

[tex]\qquad \tt \rightarrow \: \sqrt{( - 16) {}^{2} + 0} [/tex]

[tex]\qquad \tt \rightarrow \: \sqrt{256} [/tex]

[tex]\qquad \tt \rightarrow \: 16 \: \: units[/tex]

For short it can be expressed as :

[tex]\qquad \tt \rightarrow \: |10| + | - 6| = 10 + 6 = 16[/tex]

[ y - coordinate of both the points are same ]

Correct option - D

Answered by : ❝ AǫᴜᴀWɪᴢ ❞