The inverse of g(5) and the inverse of h(x) are 2 and [tex]h^{-1}=\frac{-x-13}{4}[/tex] respectively
Inverse of a function
Given the following coordinates and function
g = {(-6, -5), (2, 5), (5,6), (6,9)}
The inverse of "g" is determined by switching the coordinates to have:
g^-1(x) = {(-5, -6), (5, 2), (6, 5), (9,6)}
Since the value of the y-coordinate when x = 5 is 2, hence g^-1(5) = 2
Given the function expressed as:
h(x) = -4x - 13
y = -4x - 13
Replace y with x
x = -4y - 13
4y = -x - 13
y = (-x-13)/4
[tex]h^{-1}=\frac{-x-13}{4}[/tex]
Determine the composite function [tex](hoh^{-1})(-1)[/tex]
h(h(x)) = h(-4x-13)
h(h(x)) =[tex]\frac{-(-4x-13)-13}{4} \\[/tex]
[tex]h(h(x))=\frac{4x}{4} \\h(h(x)) = x\\h(h(-1)) = -1[/tex]
Learn more on composite function here: https://brainly.com/question/10687170
#SPJ1