Respuesta :

Answer:

The vertices of ∆ABC are A(2, 8), B(16, 2), and C(6, 2). The perimeter of ∆ABC is  30  units, and its area is  2  square units.


Answer:

Perimeter is 32.4 unts

Area is 30.1 square units.  

Step-by-step explanation:

Given the vertices of ∆ABC are A(2, 8), B(16, 2), and C(6, 2). we have to find the area and perimeter of triangle ABC.

By distance formula,

[tex]D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

[tex]AB=\sqrt{(16-2)^2+(2-8)^2}=\sqrt{196+36}=\sqrt{232}=15.2units[/tex]

[tex]AC=\sqrt{(6-2)^2+(2-8)^2}=\sqrt{16+36}=\sqrt{52}=7.2units[/tex]

[tex]BC=\sqrt{(6-16)^2+(2-2)^2}=\sqrt{100+0}=\sqrt{100}=10units[/tex]

Perimeter=AB+BC+AC=15.2+7.2+10=32.4 units

Now, we find the area of triangle

[tex]semiperimeter=\frac{a+b+c}{2}=\frac{32.4}{2}=16.2 units[/tex]

By Heron's formula

[tex]Area=\sqrt{s(s-a)(s-b)(s-c)}\\\\=\sqrt{16.2(16.2-15.2)(16.2-7.2)(16.2-10)}\\\\=\sqrt{16.2(1)(9)(6.2)}\\\\=\sqrt{903.96}=30.0659\sim30.1units^2[/tex]

Area is 30.1 square units.      

Ver imagen SerenaBochenek