hpifer
contestada

Suppose a normal distribution has a mean of 20 and a standard deviation of four. A value of 26 is how many standard deviation's away from the mean?

Respuesta :

[tex]26=20+6=20+\dfrac64\times4=20+1.5\times4[/tex]

which means 26 is 1.5 standard deviations away from the mean.
Knowing that:
The standard score, or z-score, represents the number of Standard deviations that separate a random variable x from average.

Formula:

[tex]z = \frac{value-average}{standard\:deviation} [/tex]

Data:
z = ?
value = 26
average = 20
standard deviation = 4

Solving:


[tex]z = \frac{value-average}{standard\:deviation} [/tex]

[tex]z = \frac{26-20}{4} [/tex]
[tex]z = \frac{6}{4} [/tex]
[tex]\boxed{\boxed{z = 1.5}} \end{array}}\qquad\quad\checkmark[/tex]

Answer:
[tex]\underline{26\:is\:1.5\:standard\:deviation\:in\:relation\:to\:the\:average.}[/tex]