If four grams of matter are converted to their equivalent amount of energy, how much energy is released? Show your work.

Respuesta :

Answer:

Equation of Special Relativity

[tex]E=mc^2[/tex]

where:

  • E = energy (measured in Joules)
  • m = mass (measured in kilograms)
  • c = speed of light where  [tex]c \approx 3 \times 10^8 \: \sf ms^{-1}[/tex]

First, convert 4 g into kilograms as mass is measured in kg:

[tex]\implies \sf 4\:g = 0.004\:kg=4 \times 10^{-3}\:kg[/tex]

Substitute the given values into the equation and solve for E:

[tex]\begin{aligned}E & = mc^2\\\implies E & = \sf (4 \times 10^{-3}) \cdot(3 \times 10^8)^2\\& = \sf (4 \times 10^{-3}) \cdot (3^2 \times 10^{8(2)})\\& = \sf (4 \times 10^{-3}) \cdot (9 \times 10^{16})\\& = \sf 4 \cdot9 \times 10^{-3} \cdot10^{16}\\& = \sf 36 \times 10^{(-3+16)}\\& = \sf 36 \times 10^{13}\\& = \sf 3.6 \times 10^{14}\: \sf J \end{aligned}[/tex]

Use Albert Einstein's equation

  • E=mc²

m=0.004kg

  • E=(0.004)(3×10⁸)²
  • E=0.004(9×10¹⁶)
  • E=3.6×10¹⁴J