Respuesta :
Answer:
Equation of Special Relativity
[tex]E=mc^2[/tex]
where:
- E = energy (measured in Joules)
- m = mass (measured in kilograms)
- c = speed of light where [tex]c \approx 3 \times 10^8 \: \sf ms^{-1}[/tex]
First, convert 4 g into kilograms as mass is measured in kg:
[tex]\implies \sf 4\:g = 0.004\:kg=4 \times 10^{-3}\:kg[/tex]
Substitute the given values into the equation and solve for E:
[tex]\begin{aligned}E & = mc^2\\\implies E & = \sf (4 \times 10^{-3}) \cdot(3 \times 10^8)^2\\& = \sf (4 \times 10^{-3}) \cdot (3^2 \times 10^{8(2)})\\& = \sf (4 \times 10^{-3}) \cdot (9 \times 10^{16})\\& = \sf 4 \cdot9 \times 10^{-3} \cdot10^{16}\\& = \sf 36 \times 10^{(-3+16)}\\& = \sf 36 \times 10^{13}\\& = \sf 3.6 \times 10^{14}\: \sf J \end{aligned}[/tex]
Use Albert Einstein's equation
- E=mc²
m=0.004kg
- E=(0.004)(3×10⁸)²
- E=0.004(9×10¹⁶)
- E=3.6×10¹⁴J