Respuesta :
Answer:
[tex]\displaystyle \text{p} K_a \approx 3.856[/tex]
Explanation:
Because 3.005 grams of potassium lactate is added to 100. mL of solution, its concentration is:
[tex]\displaystyle \begin{aligned} \left[ \text{KC$_3$H_$_5$O$_3$}\right] & = \frac{3.005\text{ g KC$_3$H_$_5$O$_3$}}{100.\text{ mL}} \cdot \frac{1\text{ mol KC$_3$H_$_5$O$_3$}}{128.17 \text{ g KC$_3$H_$_5$O$_3$}} \cdot \frac{1000\text{ mL}}{1\text{ L}} \\ \\ &= 0.234\text{ M}\end{aligned}[/tex]
By solubility rules, potassium is completely soluble, so the compound will dissociate completely into potassium and lactate ions. Therefore, [KC₃H₅O₃] = [C₃H₅O₃⁺]. Note that lactate is the conjugate base of lactic acid.
Recall the Henderson-Hasselbalch equation:
[tex]\displaystyle \begin{aligned}\text{pH} = \text{p}K_a + \log \frac{\left[\text{Base}\right]}{\left[\text{Acid}\right]} \end{aligned}[/tex]
[Base] = 0.234 M and [Acid] = 0.500 M. We are given that the resulting pH is 3.526. Substitute and solve for pKₐ:
[tex]\displaystyle \begin{aligned} (3.526) & = \text{p}K_a + \log \frac{(0.234)}{(0.500)} \\ \\ 3.526 & = \text{p}K_a + (-0.330) \\ \\ \text{p}K_a & = 3.856\end{aligned}[/tex]
In conclusion, the pKₐ value of lactic acid is about 3.856.