Respuesta :

The equivalent expression of [tex]18x^2\sqrt{14x^8} \div 6\sqrt{7x^4}[/tex] is [tex]3x^4\sqrt{2}[/tex]

How to determine the equivalent expression?

The expression is given as:

[tex]18x^2\sqrt{14x^8} \div 6\sqrt{7x^4}[/tex]

Start by dividing 18 by 6

[tex]3x^2\sqrt{14x^8} \div \sqrt{7x^4}[/tex]

Next, divide 14 by 7

[tex]3x^2\sqrt{2x^8} \div \sqrt{x^4}[/tex]

Take the square root of x^8 and x^4

[tex]3x^2 * x^4\sqrt{2} \div x^2[/tex]

Divide x^2 by x^2

[tex]3* x^4\sqrt{2}[/tex]

Evaluate

[tex]3x^4\sqrt{2}[/tex]

Hence, the equivalent expression of [tex]18x^2\sqrt{14x^8} \div 6\sqrt{7x^4}[/tex] is [tex]3x^4\sqrt{2}[/tex]

Read more about equivalent expression at:

https://brainly.com/question/2972832

#SPJ1