20 points pls help quick

Let f(x) = 3x² + mx + 5 and g(x) = nx² - 4x - 2. The functions are combined to
form the new function h(x)=f(x)xg(x). Points (1,-40) and (-1,24) satisfy the new
function. Determine f(x) and g(x).

Respuesta :

Answer:

[tex]\displaystyle f(x) = 3x^2 + 2x + 5\text{ and } g(x) =2x^2 - 4x -2\text{ or } \\ \\ f(x) = 3x^2 + 5 \text{ and } g(x) = x^2 - 4x -2[/tex]

Step-by-step explanation:

We are given the two functions:

[tex]\displaystyle f(x) = 3x^2 + mx +5 \text{ and } g(x) = nx^2 - 4x -2[/tex]

And that:

[tex]\displaystyle h(x) = f(x)\cdot g(x)[/tex]

With the given conditions that (1, -40) and (-1, 24) satisfy the new function, we want to determine functions f and g.

First, find h:

[tex]\displaystyle \begin{aligned} h(x) & = f(x)\cdot g(x) \\ \\ & = (3x^2 + mx +5)(nx^2 - 4x -2) \end{aligned}[/tex]

Because (1, -40) and (-1, 24) are points on the graph of h, we have that h(-1) = 40 and h(-1) = 24. In other words:


[tex]\displaystyle \begin{aligned} h(1) = -40 & = (3(1)^2 + m(1) +5)(n(1)^2 - 4(1) -2) \\ \\ & = (3 + m +5)(n-4 -2) \\ \\ & = (m+8)(n-6) \\ \\ -40 &= mn-6m+8n-48 \end{aligned}[/tex]

And:

[tex]\displaystyle \begin{aligned} h(-1) = 24 & = (3(-1)^2 + m(-1) +5)(n(-1)^2 -4(-1) -2) \\ \\ & = (3 - m +5)(n + 4 -2) \\ \\ & = (-m+8)(n+2) \\ \\ 24 & = -mn -2m + 8n +16 \end{aligned}[/tex]

Solve the system of equations. Adding the two equations together yield:

[tex]\displaystyle -16 = -8m+16n - 32[/tex]

Solve for either m or n:

[tex]\displaystyle \begin{aligned} -16 & = -8m + 16n - 32 \\ \\ 16 & = -8m + 16n \\ \\ 8m & = 16n - 16 \\ \\ m & = 2n -2\end{aligned}[/tex]

Substitute this into one of the two equations above and solve:


[tex]\displaystyle \begin{aligned} -40 & = mn - 6m + 8n - 48 \\ \\ 0 & = (2n-2)n -6 (2n-2) + 8n -8 \\ \\ &= (2n^2 - 2n) + (-12n + 12) +8 n - 8 \\ \\ & = 2n^2 -6n + 4 \\ \\ & = n^2 - 3n + 2 \\ \\ &= (n-2)(n-1) \\ \\ & \end{aligned}[/tex]

Therefore:


[tex]\displaystyle n = 2 \text{ or } n = 1[/tex]

Solve for m:

[tex]\displaystyle \begin{aligned}m &= 2n-2 & \text{ or } m & = 2n-2 \\ \\ & = 2(2) - 1 &\text{ or } & =2(1) -2 \\ \\ &= 2 &\text{ or } & = 0 \end{aligned}[/tex]

Hence, the values of n and m are either: 2 and 2, respectively; or 1 and 0, respectively.

In conclusion, functions f and g are:


[tex]\displaystyle f(x) = 3x^2 + 2x + 5\text{ and } g(x) =2x^2 - 4x -2\text{ or } \\ \\ f(x) = 3x^2 + 5 \text{ and } g(x) = x^2 - 4x -2[/tex]