Respuesta :
Answer:
[tex]\text{Slope} = \dfrac{7}9[/tex]
Step-by-step explanation:
[tex]\text{Given that,}~ (x_1,y_1) = (16,14)~ \text{and}~ (x_2,y_2) = (-2,0)\\\\\text{Slope,}~ m = \dfrac{y_2 - y_1}{x_2 -x_1}\\\\\\~~~~~~~~~~~~=\dfrac{0-14}{-2-16}\\\\\\~~~~~~~~~~~~=\dfrac{-14}{-18}\\\\\\~~~~~~~~~~~~=\dfrac{7}9[/tex]
Answer:
m = 7/9
m = 7/9m ≈ 0.80
Step-by-step explanation:
Given two points:
(16, 14), (-2, 0)
To find:
The slope
Solution:
We know that,
[tex] \rm Slope(m) = \cfrac{ y_2 - y_1}{x_2 - x_1} [/tex]
According to the question,
- y_2 = 0
- y_1 = 14
- x_2 = -2
- x_1 = 16
Note:[The underscore refers to that the numbers after the underscore is a subscript]
So Substitute them on the formulae:
[tex] \implies \rm \: m = \cfrac{0 - 14}{ - 2 - 16} [/tex]
Simplify it.
[tex] \implies \rm \: m = \cfrac{ \cancel{- 14} \: {}^{7} }{ \cancel{- 18} \: {}^{9} } [/tex]
[tex] \implies \boxed{ \rm \: m = \cfrac{7}{9} }[/tex]
[tex] \implies \rm \boxed{ \rm m \approx0.80}[/tex]
Thus,the slope is 7/9 in fraction and 0.80 (Nearest tenth) in decimal.