contestada

A map shows that the vertices of a backyard are W(-100,-70), X(-100,0),Y(0,0), and Z(-60,-70) . The coordinates are measured in feet. The line segment XZ separates the backyard into a lawn and a garden. The area of the lawn is greater than the area of the garden. How many times larger is the lawn than the garden?

Respuesta :

The area of the lawn is 2.5 times greater than the area of the garden.

What is Heron's formula in math?

Heron's formula for finding the area of a triangle in terms of the lengths of its sides.

In symbols, if a, b, and c are the lengths of the sides: Area = √s(s - a)(s - b)(s - c) where s is half the perimeter, or (a + b + c)/2.

Given vertices W(-100,-70), X(-100,0),Y(0,0), and Z(-60,-70) of a backyard,

We have to find distances WX, XY, YZ, ZW and XZ:

1. WX= √(-100+100)²+(0+70)²

=√0+4900

=70

2. XY= √(0+100)²+(0-0)²

=100 units.

3. YZ= √(-60-0)²+(-70-0)²

=√3600+4900

= √8500= 10√85

4. ZW= √(-60+100)²+(-70+70)²

=√40²+0

=40 units

5. XZ= √(-60+100)²+(-70+0)²

=√40²+70²

=√6500=10√65

Then:

1. the area of WXZ

[tex]\sqrt{(70+40+10\sqrt{65}) /2 * ({70+40+10\sqrt{65}) /2 -70* {(70+40+10\sqrt{65}) /2 -40[/tex]*[tex]\sqrt{(70+40+10\sqrt{65}) /2 -10\sqrt{65}[/tex]

=1400 feet²

Area of XYZ= [tex]\sqrt{(100+10\sqrt{65}+10\sqrt{85}) /2 * (100+10\sqrt{65}+10\sqrt{85}) /2 -100* {(100+10\sqrt{85}+10\sqrt{65}) /2[/tex]-[tex]\sqrt{-10\sqrt{85}*(10+10\sqrt{85} +10\sqrt{65}) /2 -10\sqrt{65}[/tex]

=3500 feet²

Then, ar(WXZ)/ ar (XYZ)= 3500/1400=2.5 times.

Learn more about heron's formula here:

https://brainly.com/question/20934807

#SPJ1