The area of a rectangular shop in the mall is 160 square meters. The perimeter is 52 meters. What are the dimensions of the shop?

Respuesta :

Answer:

width = 10 m

length = 16 m

Step-by-step explanation:

Formula

[tex]\textsf{Area of a rectangle} = wl[/tex]

[tex]\textsf{Perimeter of a rectangle}=2(w+l)[/tex]

(where  [tex]w[/tex] is width and [tex]l[/tex] is length)

Given:

  • Area = 160 m²
  • Perimeter = 52 m

Substituting the given values into the formulae to create two equations:

[tex]\textsf{Equation 1}: \quad wl=160[/tex]

[tex]\textsf{Equation 2}: \quad 2(w+l)=52[/tex]

Rearranging Equation 1 to make w the subject:

[tex]\implies w=\dfrac{160}{l}[/tex]

Substituting expression for w into Equation 2 and solving for [tex]l[/tex]:

[tex]\implies 2\left(\dfrac{160}{l}+l\right)=52[/tex]

[tex]\implies \dfrac{160}{l}+l=26[/tex]

[tex]\implies 160+l^2=26l[/tex]

[tex]\implies l^2-26l+160=0[/tex]

[tex]\implies l^2-10l-16l+160=0[/tex]

[tex]\implies l(l-10)-16(l-10)=0[/tex]

[tex]\implies (l-10)(l-16)=0[/tex]

[tex]\implies l=10, 16[/tex]

According to Equation 1:

  • If length = 10 m  ⇒  width = 16 m
  • If length = 16 m  ⇒  width = 10 m

As width < length, the dimensions of the shop are:

  • width = 10 m
  • length = 16 m