Respuesta :

Volume of a right cone with base radius r cm and height h cm :

V = 1/3 π r² h cm³

Surface area :

A = (π r² + π r √(h² + r²)) cm²

Volume of a sphere with radius r cm :

V = 4/3 π r³ cm³

Surface area :

A = 4 π r² cm²

Volume of a cuboid with dimensions r cm × r cm × h cm :

V = r² h cm³

Surface area :

A = 2 r² + 4 r h

a. If the cone and sphere have the same volume, then

1/3 π r² h = 4/3 π r³   ⇒   h = 4r

b. If the area of the cuboid is 98 cm², then

2 r² + 4 r h = 98   ⇒   r (r + 2 h) = 49

c. Since h = 4r, substituting this into the equation from (b) gives

r (r + 8 r) = 9 r² = 49   ⇒   r² = 49/9   ⇒   r = 7/3

d. With r = 7/3, we have

h = 4 × 7/3 = 28/3

and so the volume of the cuboid is

V = (7/3 cm)² (28/3 cm) = 1372/27 cm³