Respuesta :
The sample mean for the data is 21.38 and the sample standard deviation for the data is 56.19
The frequency distribution for the data
To do this, we start by calculating the midpoint of each class using:
Midpoint= (Lower + Upper)/2
Using the above formula, we have:
Age (x) Frequency (f)
2 24.8
9.5 422
17 194
22 256
29.5 50.7
39.5 35.7
54.5 75.2
70 54.3
The sample mean for the data
This is calculated using:
[tex]\bar x = \frac{\sum fx}{\sum f}[/tex]
So, we have:
[tex]\bar x = \frac{2*24.8 + 9.5*422 + 17*194 + 22*256 + 29.5*50.7 + 39.5*35.7 + 54.5*75.2+70*54.3}{24.8 + 422 + 194 + 256 + 50.7 + 35.7 + 75.2 + 54.3}[/tex]
Evaluate
[tex]\bar x = \frac{23793.8}{1112.7}[/tex]
[tex]\bar x = 21.38[/tex]
Hence, the sample mean for the data is 21.38
The sample standard deviation for the data
This is calculated using:
[tex]\sigma_x = \sqrt{\frac{\sum f(x- \bar x)^2}{\sum f - 1}}[/tex]
So, we have:
[tex]\sigma_x = \sqrt{\frac{2*(24.8-21.38)^2 + .............+70*(54.3-21.38)^2}{24.8 + 422 + 194 + 256 + 50.7 + 35.7 + 75.2 + 54.3 - 1}}[/tex]
Evaluate
[tex]\sigma_x = \sqrt{\frac{3509508.4556}{1111.7}}[/tex]
[tex]\sigma_x = \sqrt{3156.88446128}[/tex]
[tex]\sigma_x = 56.19[/tex]
Hence, the sample standard deviation for the data is 56.19
Read more about mean and standard deviation at:
https://brainly.com/question/15858152
#SPJ1