Respuesta :
Answer:
[tex](x+5)^2+y^2=117[/tex]
Step-by-step explanation:
Equation of a circle
[tex](x-a)^2+(y-b)^2=r^2[/tex]
(where (a, b) is the center and r is the radius)
Given:
- center = (-5, 0)
[tex]\implies (x-(-5))^2+(y-0)^2=r^2[/tex]
[tex]\implies (x+5)^2+y^2=r^2[/tex]
To find r², input the coordinates of the given point (4, -6) into the equation:
[tex]\implies (4+5)^2+(-6)^2=r^2[/tex]
[tex]\implies 81+36=r^2[/tex]
[tex]\implies r^2=117[/tex]
Therefore, the equation of the circle is:
[tex]\implies (x+5)^2+y^2=117[/tex]
Answer:
Standard form = (x + 5)² + y² = 117
General Form = x² + 10x + y² - 92 = 0
Explanation:
(x - h)² + (y - k)² = r²
- center: (h, k)
Find radius using:
[tex]\sf Distance \ between \ two \ points = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex]
[tex]\rightarrow \sf radius : \sqrt{(-5-4)^+(0-(-6))^2} \ = \ 3\sqrt{13} \ \ units[/tex]
Find equation inserting values: Given center: (-5, 0)
⇒ (x - (-5))² + (y - 0)² = (3√13)²
⇒ (x + 5)² + y² = 117
⇒ x² + 10x + 25 + y² - 117 = 0
⇒ x² + 10x + y² - 92 = 0