Respuesta :

Answer:

A) [tex]\displaystyle x=\frac{-8\pm\sqrt{40}}{2}[/tex]

Step-by-step explanation:

We know that the discriminant is [tex]b^2-4ac=(8)^2-4(1)(6)=64-24=40[/tex], so it cannot be B or C.

Also, because [tex]2a=2(1)=2[/tex], then the denominator must be 2, which means that A is the correct un-simplified solution for the quadratic equation.

Answer:

Choice A

Step-by-step explanation:

Let's solve to check.

Given:

x^2 + 8x + 6 = 0

Solution:

We know that,

  • Let us assume that Quadratic Formula = x

[tex] \implies \rm \: x = \cfrac{ { - b±} \sqrt{ {b}^{2} - 4(ac)} }{2a} [/tex]

  • Here, a = 1
  • b = 8
  • c =6

So substitute them:

[tex] \implies \rm \: x = \cfrac{ - 8± \sqrt{ {8}^{2} - 4(1 \times 6)} }{2 \times 1} [/tex]

[tex] \implies \rm \: x = \cfrac{ - 8± \sqrt{64 - 4 \times 6 } }{2} [/tex]

[tex] \implies \rm \: x= \cfrac{ - 8 ±\sqrt{64 - 24} }{2} [/tex]

[tex]\boxed{ \implies \rm \: x = \cfrac{ - 8 ±\sqrt{40}}{2}}[/tex]

Hence, choice A[x = {8±√(40)/2}] shows the un-simplified solution for x2 + 8x + 6 = 0.