Respuesta :
Answer:
A) [tex]\displaystyle x=\frac{-8\pm\sqrt{40}}{2}[/tex]
Step-by-step explanation:
We know that the discriminant is [tex]b^2-4ac=(8)^2-4(1)(6)=64-24=40[/tex], so it cannot be B or C.
Also, because [tex]2a=2(1)=2[/tex], then the denominator must be 2, which means that A is the correct un-simplified solution for the quadratic equation.
Answer:
Choice A
Step-by-step explanation:
Let's solve to check.
Given:
x^2 + 8x + 6 = 0
Solution:
We know that,
- Let us assume that Quadratic Formula = x
[tex] \implies \rm \: x = \cfrac{ { - b±} \sqrt{ {b}^{2} - 4(ac)} }{2a} [/tex]
- Here, a = 1
- b = 8
- c =6
So substitute them:
[tex] \implies \rm \: x = \cfrac{ - 8± \sqrt{ {8}^{2} - 4(1 \times 6)} }{2 \times 1} [/tex]
[tex] \implies \rm \: x = \cfrac{ - 8± \sqrt{64 - 4 \times 6 } }{2} [/tex]
[tex] \implies \rm \: x= \cfrac{ - 8 ±\sqrt{64 - 24} }{2} [/tex]
[tex]\boxed{ \implies \rm \: x = \cfrac{ - 8 ±\sqrt{40}}{2}}[/tex]
Hence, choice A[x = {8±√(40)/2}] shows the un-simplified solution for x2 + 8x + 6 = 0.