Respuesta :

Answer:

[tex]g(x)=\log (x+1)+4[/tex]

Step-by-step explanation:

Translations

For [tex]a > 0[/tex]

[tex]f(x+a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units left}[/tex]

[tex]f(x-a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units right}[/tex]

[tex]f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}[/tex]

[tex]f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}[/tex]

Parent function:  [tex]f(x)=\log x[/tex]

From inspection of the graph, the parent function has been translated 1 unit left and 4 units up.

Function translated 1 unit left:  [tex]f(x+1)=\log (x+1)[/tex]

Function translated 4 units up:  [tex]f(x+1)+4=\log (x+1)+4[/tex]

Therefore:

[tex]g(x)=\log (x+1)+4[/tex]