Respuesta :

Answer: x1  = 5

               x2 = 1

Step-by-step explanation:

1. Identify the coefficients

2. Move the constant to the right side of the equation and combine

3.  Complete the square

4. Solve for x

Answer:

x = 5 and 1

Step-by-step explanation:

[tex]x^2-6x+5=0\\x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{\left(-6\right)^2-4\cdot \:1\cdot \:5}}{2\cdot \:1}\\x_{1,\:2}=\frac{-\left(-6\right)\pm \:4}{2\cdot \:1}\\\rightarrow x_1=\frac{-\left(-6\right)+4}{2\cdot \:1},\:x_2=\frac{-\left(-6\right)-4}{2\cdot \:1}\\\\\frac{-\left(-6\right)+4}{2\cdot \:1}\\\\=\frac{6+4}{2\cdot \:1}\\\\=\frac{10}{2\cdot \:1}\\\\=\frac{10}{2}\\\\=5\\\\\\\frac{-\left(-6\right)-4}{2\cdot \:1}\\\\=\frac{6-4}{2\cdot \:1}\\\\=\frac{2}{2\cdot \:1}\\\\=\frac{2}{2}\\\\=1[/tex]