Respuesta :

For this problem, we need to use our integral knowledge to set up the problem:

The bounds will be from 2 to 6, cutting tiny horizontal bars into the graph, to approximate the area

Now for the function inside the integral:

 ⇒ it is the top function minus the bottom function

  • top function: y= x²
  • bottom function: x-axis ⇒ y =0

       ⇒ function within integral = x² - 0

Let's put it all together and solve:

   [tex]Area=\int\limits^6_2 {x^2-0} \, dx =\int\limits^6_2 {x^2} \, dx=\frac{6^3}{3} -\frac{2^3}{3} \\Area=\frac{6^3-2^3}{3} =\frac{216-8}{3} =\frac{208}{3}[/tex]

Answer: 208/3 ≈ 69.333

Hope that helps!