The values of x and y that can be used to maximimize the profit of the monopolist will be 300 and 200 respectively.
The cost function will be:
C(x, y) = 42x + 35y
The revenue function will be:
R(x, y) = 110x + 127y − 0.04xy − 0.1x² − 0.2y²
The profit function will be:
= Revenue - Cost
= (110x + 127y − 0.04xy − 0.1x² − 0.2y²) - 42x + 35y
= 68x + 92y - 0.04xy − 0.1x² − 0.2y²
We'll maximize P with respect to x. This will be:
= 68 - 0.04y - 0.2x
We'll maximize P with respect to y. This will be:
= 92 - 0.04x - 0.4y
Equating them to zero will give:
x = 340 - 0.2y
92 - 0.04x - 0.4y = 0
92 - 0.04(340 - 0.2y) - 0.4y = 0
92 - 13.6 + 0.008y - 0.4y = 0
78.4 - 0 392y = 0
y = 78.4/0.392
y = 200.
x = 340 - 0.2y
x = 340 - 0.2(200)
x = 340 - 40
x = 300
Learn more about monopolist on:
https://brainly.com/question/13113415