Respuesta :

The interior angles of a triangle add up to 180 degrees.

(2x - 10) + (x + 30) + 70 = 180...combine like terms
3x + 90 = 180
3x = 180 - 90
3x = 90
x = 90/3
x = 30

m < A = 2x - 10 = 2(30) - 10 = 60 - 10 = 50 <== m < A

Answer:

m∠A = 50°

Step-by-step explanation:

We know that,

The sum of the measures of the angles of a triangle is 180°.

So, we get,

[tex](2x-10)+(x+30)+70=180[/tex]

i.e. [tex]3x+20+70=180[/tex]

i.e. [tex]3x+90=180[/tex]

i.e. [tex]3x=90[/tex]

i.e. x= 30°

So, m∠A = [tex](2x-10)[/tex] = [tex]2\times 30-10[/tex] = [tex]60-10[/tex] = 50°

Thus, measure of angle A is 50°.