Respuesta :
Answer:
[tex]w=\dfrac{8x^2-2y}{y}[/tex]
Step-by-step explanation:
Question
[tex]\textsf{When}\:\dfrac{2x^2}{y}=\dfrac{w+2}{4}\:\textsf{is solved for}\:w,\:\textsf{one equation is}\:w=\dfrac{8x^2}{y}-2[/tex]
Which of the following is an equivalent to find w?
[tex]w=\dfrac{8x^2+2y}{y}[/tex]
[tex]w=\dfrac{8x^2-2y}{y}[/tex]
[tex]w=8x^2-3y[/tex]
[tex]w=8x^2-y[/tex]
Solution
[tex]\textsf{Given}: \quad w=\dfrac{8x^2}{y}-2[/tex]
[tex]\implies w=\dfrac{8x^2}{y}-\dfrac{2y}{y}[/tex]
[tex]\implies w=\dfrac{8x^2-2y}{y}[/tex]
[tex]\\ \rm\Rrightarrow w=\dfrac{8x^2}{y}-2[/tex]
- Take LCM as y
[tex]\\ \rm\Rrightarrow w=\dfrac{8x^2-2y}{y}[/tex]
Option B is correct