Respuesta :

The value of the integral 3ydx+2xdy using Green's theorem be - xy

The value of    [tex]\int\limits_c 3ydx+2xdy[/tex]  be -xy

What is Green's theorem?

Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C.

If M and N are functions of (x, y) defined on an open region containing D and having continuous partial derivatives there, then

[tex]\int\limits_c Mdx+Ndy[/tex] = [tex]\int\int\〖(N_{x}-M_{y}) \;dxdy[/tex]

Using green's theorem, we have

[tex]\int\limits_c Mdx+Ndy[/tex] = [tex]\int\int\〖(N_{x}-M_{y}) \;dxdy[/tex] ............................... (1)

Here [tex]N_{x}[/tex] = differentiation of function N w.r.t. x

          [tex]M_{y}[/tex]= differentiation of function M w.r.t. y

Given function is: 3ydx + 2xdy

On comparing with equation (1), we get

M = 3y, N = 2x

Now, [tex]N_{x}[/tex] = [tex]\Luge\frac{dN}{dx}[/tex]

               = [tex]\frac{d}{dx} (2x)[/tex]

              = 2

and, [tex]M_{y}[/tex] = [tex]\Huge\frac{dM}{dy}[/tex]

             = [tex]\frac{d}{dy} (3y)[/tex]

             = 3

Now using Green's theorem

= [tex]\int\int\〖(2 -3) dx dy[/tex]

= [tex]\int\int\ -dxdy[/tex]

= [tex]-\int\ x dy[/tex]

=[tex]-xy[/tex]

The value of  [tex]\int\limits_c 3ydx+2xdy[/tex]  be -xy.

Learn more about Green's theorem here:

https://brainly.com/question/14125421

#SPJ4